
Problem Set 3 - ECMA 31130

T. Lamadon

Part 1 (25 points)

We consider a measurement system for a random variable of interest X which is unobserved
to the econometrician. Instead we observe two variables Y1, Y2 related to X in the following
way:

Yi1 = Xi + εi1

Yi2 = Xi + εi2

and we assume that E(X) = µ, Var(X) = σ2
x, X ⊥ ε1 ⊥ ε2, E(ε1) = E(ε2) = 0 and

Var(ε1) = σ2
1,Var(ε2) = σ2

2. Given a set of independent draws
(
Yi1, Yi2)i=1..n from our model,

we consider the following estimator for µ:

µn = α× 1

n

n∑
i=1

Y1i + (1− α)× 1

n

n∑
i=1

Y2i

1. (5 points) Show that µn is an unbiased estimator of µ.

2. (5 points) Show that µn is a consistent estimator of µ.

3. (5 points) Compute the variance of µn as a function of α and the other parameters.

4. (6 points) Find α as a function of σ1, σ2 that minimizes the variance. Interpret the
results.

5. (4 points) We assumed through this question that ε1, ε2, X were independent. Could we
find a weaker assumption and keep the unbiasedness?

Part 2 (25 points)

We keep the same model as in Part 1: Yik = X+εik with ε1 ⊥ ε2, E(εk) = 0 and Var(εk) = σ2
k.

In this part 2, we further assume that the distributions of εk are normal εk ∼ N (0, σ2
k),

and that Var(X) = 0 such that X = µ is a constant. Under these assumptions Y1, Y2 are
normally distributed as well.

1. (5 points) Show that under the current assumptions (X = µ, σx = 0) we have that
Y1 ⊥ Y2. If, as in Part 1, we had that σx > 0 what would Cov(Y1, Y2) be?
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2. (8 points) Given that Y1, Y2 are independent here and the underlying distributional as-
sumption, compute the likelihood and the log-likelihood of observing

(
Yi1, Yi2

)n
i=1

given
parameters µ, σ1, σ2.

3. (7 points) Finally, solve for the maximum likelihood estimator for µ (consider here that
the variances σ1, σ2 are known). Explain your steps.

4. (5 points) Compare and contrast this estimator to the optimal weighting found in ques-
tion (3), part 1.

Part 3 - True, False or Uncertain (25 points)

For each of the following questions, please answer whether the statement is True, False or
Uncertain, and then justify your answer with a short paragraph, a proof, or a counterexample
as appropriate. No credit will be given for answers without any justification.

1. (5 points) Let U be a uniform random variable on [0, 1], then E[Uγ] = 1
γ
.

2. (5 points) Consider the ML estimator θn for a parameter θ. This estimator is always
unbiased for θ.

3. (5 points) All econometric estimators achieve
√
n convergence to a normal distribution,

i.e. √
n
(
θ̂n − θ

)
d−→ N (0, σ2)

4. (5 points) Multinomial logit and conditional logit models yield solutions over the set of
options such that the odds of preferring one option over another can change when a new
alternative is introduced.

5. (5 points) Let X1, . . . , Xn denote the number of Bernoulli trials with p until the first
success happens, which can be modeled as a geometric distribution parameterized by p.
Therefore, if k is the number of trials, then

Pr {Xi = k} = (1− p)k−1p

This implies that E[Xi] = 1
p
.

Part 4 - A DIY ML Estimator (25 points)

You are asked to construct the ML algorithm from scratch for a simple model. Follow the
sequence of steps provided to get full credit for this question. DO NOT use any pre-packaged,
high-level econometric functions to work through this question, as your grade will reflect your
understanding and execution of the ML algorithm without the aid of Stata-like commands.
This will prove useful later in your career when you develop and estimate structural models!
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1. Simulate 1000 independent draws (indexed by i) of an unobserved variable εi drawn
from N (0, 4). Similarly, generate data for the observed variable Xi from N (0, 1).
Finally, construct

Yi = Xiβ + εi

Take β = 1.5. You can delete εi from your data now, to replicate the conditions under
which you would normally perform such regressions.

Now, we treat β and σ2
ε as the parameters of interest, which can be recovered using MLE

from the data with observations for Yi, Xi.

2. Construct a function that computes the log-likelihood associated with the entire sam-
ple, taking inputs for values of β and σ2

ε .

3. Evaluate and plot the log-likelihood as a function of β, fixing σ2
ε = 4. Evaluate and plot

the log-likelihood as a function of σ2
ε , fixing β = 1.5. Comment on the identification of

the model parameters using ML using the plots generated.

4. Using the function above, attempt to maximize the log-likelihood (or minimize the
negative log-likelihood) to recover the ML estimates for β and σ2

ε . You may use an
optimizer function or package.

5. Compute the standard errors for your estimators using the Central Limit result for the
ML estimator.

6. Compute the standard errors for your estimators using the bootstrap method.

Page 3


